
 1 / 11

Basics of Compiler
Theory

Author: Teo Samaržija

 2 / 11

My experience with making compilers...

I have made two compilers for my programming language. One is targeting x86
and the other one targeting WebAssembly.

 3 / 11

Tokenizer

● A part (usually the first one) of the compiler
that tells other parts of the compiler where
one word in a programming language ends
and where another begins.

Non-tokenized code looks to a computer like Japanese writing looks to us.

 4 / 11

Lexical Analyzer

● What type of the word is each word.
● Necessary in programming languages such

as C (typedef – usually considered a bug in
the C programming language).

Is time a noun or an adjective? Is flies a verb or a noun? Is like a verb or
a conjunction?

 5 / 11

Parser

● Tells other parts of the compiler which word is
connected to each word grammatically.

● Many frameworks that are supposed to make
writing parsers easier: YACC, BISON...

“known rumor” - wrong “known places” - correct

 6 / 11

Abstract Syntax Tree

● A structure in the memory of the computer
created by the parser.

Abstract syntax tree of 1+2*3 Abstract syntax tree of (1+2)*3

To calculate the result of
addition, you need to first
calculate the result of the
multiplication.

 7 / 11

Semantic Analyzer

● Not all sentences that the parser accepts are
syntactically correct. The same seems to be
true for the parser of natural language in the
human brain: More people have been to
Russia than I have.

● Parser does not denote parts of the sentence
(types in programming languages), that is
the job of semantic analyzer.

 8 / 11

Compiler

● The word has two meanings:

– (broad sense) A program that converts
code written in one programming language
to another programming language (usually
machine code): GCC, CLANG, Visual Studio
C++...

– (strict sense) A subprogram that converts
an abstract syntax tree into assembly
code. Also called code generator. LLVM is a
framework supposed to help with that.

 9 / 11

Assembly Code

● The machine code (ones and zeros that the
computer understands) full of shortened
forms (to be easier to read and write).

● Assembler – the program that replaces those
contracted forms with ones and zeros.

Assembly language reads to a computer similar to what this sentence reads to an English
speaker unfamiliar with the Internet slang.

 10 / 11

Linker

● A file with raw machine code is not very useful to a computer.

– How can the computer even know it is machine code, rather
than image or a sound (also represented by ones and
zeros)?

● Two types of linkers:

– Dynamic linker – executable file only contains a part of the
program, it calls external libraries assumed to be present in
the operating system.

– Static linker – executable file contains everything necessary
for the program to run on some operating system.

 11 / 11

Thank you for watching!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

