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Basics of Compiler 
Theory
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My experience with making compilers...

I have made two compilers for my programming language. One is targeting x86 
and the other one targeting WebAssembly.
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Tokenizer

● A part (usually the first one) of the compiler 
that tells other parts of the compiler where 
one word in a programming language ends 
and where another begins.

Non-tokenized code looks to a computer like Japanese writing looks to us.
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Lexical Analyzer

● What type of the word is each word.
● Necessary in programming languages such 

as C (typedef – usually considered a bug in 
the C programming language).

Is time a noun or an adjective? Is flies a verb or a noun? Is like a verb or 
a conjunction?
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Parser

● Tells other parts of the compiler which word is 
connected to each word grammatically.

● Many frameworks that are supposed to make 
writing parsers easier: YACC, BISON...

“known rumor” - wrong “known places” - correct
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Abstract Syntax Tree

● A structure in the memory of the computer 
created by the parser.

Abstract syntax tree of 1+2*3 Abstract syntax tree of (1+2)*3

To calculate the result of 
addition, you need to first 
calculate the result of the 
multiplication.
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Semantic Analyzer

● Not all sentences that the parser accepts are 
syntactically correct. The same seems to be 
true for the parser of natural language in the 
human brain: More people have been to 
Russia than I have.

● Parser does not denote parts of the sentence 
(types in programming languages), that is 
the job of semantic analyzer.
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Compiler

● The word has two meanings:

– (broad sense) A program that converts 
code written in one programming language 
to another programming language (usually 
machine code): GCC, CLANG, Visual Studio 
C++...

– (strict sense) A subprogram that converts 
an abstract syntax tree into assembly 
code. Also called code generator. LLVM is a 
framework supposed to help with that.
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Assembly Code

● The machine code (ones and zeros that the 
computer understands) full of shortened 
forms (to be easier to read and write).

● Assembler – the program that replaces those 
contracted forms with ones and zeros.

Assembly language reads to a computer similar to what this sentence reads to an English 
speaker unfamiliar with the Internet slang.
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Linker

● A file with raw machine code is not very useful to a computer.

– How can the computer even know it is machine code, rather 
than image or a sound (also represented by ones and 
zeros)?

● Two types of linkers:

– Dynamic linker – executable file only contains a part of the 
program, it calls external libraries assumed to be present in 
the operating system.

– Static linker – executable file contains everything necessary 
for the program to run on some operating system.
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Thank you for watching!
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