

Programming for the Web in your
Programming Language

Author: Teo Samaržija

JavaScript

● JavaScript has its special place on the client-
side of the web.

● However, you do not need to write everything
(or even a significant part) in JavaScript, as
many people claim.

● These days, it is probably easier to make
your programming language run on the web
than to make it run natively on x86 (AMD
and Intel) or ARM (most smartphones)
processors.

WebAssembly

● Originally a Mozilla’s standard for textual
representation of JavaScript Bytecode.

● These days, it is both a textual and binary
representation of JavaScript Bytecode and is
supported by all popular browsers except
Internet Explorer 11 (becoming obsolete).

● WebAssembly Binary Toolkit: feature-rich and
easy-to-use assemblers and linkers that target
WebAssembly.

Installing WebAssembly

● Hard way:
– Use CMAKE to compile it from source. CMAKE is hard to

install properly on many versions of Linux.

● Easier way:
– Download the binary releases from GitHub, and hope they

will work on your version on Linux.

● Easy way:
– Install NodeJS and NPM. They work without problems on

nearly all versions of Linux.

– Install the version of WebAssembly Binary Toolkit compiled
with Emscripten form the NPM repository (called wabt).

Why I used C++?

● Many successful compilers are written in C++.
● C++ is the middle ground between JavaScript

and Rust in terms of “strictness”.
● No need to worry about deep versus shallow

copying (so I thought).
● C++ has advanced significantly since C++98:

lambda functions, regular expressions, string
manipulation template functions in the standard
library, multi-line strings...

Automated Testing

● Some parts of the compiler, such as the
tokenizer and the parser, are very easy to test
automatically, and you will save yourself a
significant amount of time if you automatize it.

● My testing code is 385 lines.

Tokenizer

● Tokenizer is the part of the compiler that tells
other parts of the compiler where one word in a
programming language ends and where other
begins.

● MISCONCEPTION: You need to learn Lex or a
similar tool.

● I used only C++ standard library, and it is 256
lines of code.

Parser

● Parser is the part of the compiler that tells other parts
of the compiler which word is connected to each word
grammatically.

● MISCONCEPTION: You need to learn to use tools
such as YACC or BISON.

● MISCONCEPTION: You need to learn to use
advanced object-oriented structures, such as builders
and composites.

● I used only C++ standard library and it is 964 lines. It
is a recursive algorithm using collections and iterators.

Semantic analysis

● Check for the malformed sentences that parser
does not catch, but which will crash the
compiler. Such also exist in natural languages:
More people have been to Russia than I have.

● Annotate the types of expressions in the syntax
tree, to make things easier for the compiler.

● My semantic analyzer is 292 lines of code.

Compilation Context

● You need to make data classes that will keep
the information about the current state of
compilations (information about currently
defined variables, functions, structures…).

● My compilingContext.cpp file is 50 lines of
code, my AssemblyCode.cpp file is 83 lines,
and my TreeRootNode.cpp file, which
initializes those data classes, is 824 lines of
code.

Compiler

● In the strict sense, “compiler” is only the subprogram that translates
the syntax tree into assembly code.

● MISCONCEPTION: You need to use advanced object-oriented
concepts, such as visitors.

● MISCONCEPTION: You need to deal with the bytecode or machine
code. That is mostly the assembler’s job, not the compiler’s job. Of
course, sometimes the C++ bit manipulation comes useful, because it
is often easier to do something in the compiler than to properly
delegate it to the assembler.

● MISCONCEPTION: Frameworks such as LLVM make things
significantly easier. WebAssembly has about the same features that
LLVM IR has. It supports the statements such as if, else, loop...

● My compiler is 1358 lines of code.

Pros of writing in your language

● Every programming language has quirks which
people do not know about, and those quirks are
a major source of bugs.
– Using EMSCRIPTEN (which compiles C++ to

JavaScript Bytecode) might even make one worse-
off, because, although JavaScript has many quirks,
the quirks of JavaScript tend to be well-known to
web-developers.

● You have a better understanding of how the
environment works.

Quirks in programming languages

Cons of writing in your language

● You need to write everything yourself – a major
source of time-consuming bugs.
– Communicating with useful JavaScript frameworks

is not nearly as trivial as it is when writing in
JavaScript.

● Making a language capable of useful string
manipulation is not trivial.

● Programming tools tend to have poor support
for non-C-like languages.

You need to write everything
I added the
support for
curly-brace-

limited blocks
into my

language
only to be

able to use
features of

programming
tools I

usually use.

How to install my compiler?
● You need to also install WebAssembly Binary

Toolkit to use it.
● You can download the releases on GitHub (my

repository is called AECforWebAssembly).
The Linux executable files there are statically
linked, so they should run on wide range of
Linuxes. There is also a 32-bit Windows
executable, a FreeDOS executable and a
WebAssembly executable for NodeJS.

● On most Linuxes, the source code of my
compiler can be compiled with a one-liner.

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

